Primordial O2 perhaps incorporated into comet during formation

The European Space Agency (ESA) announced today that its Rosetta spacecraft has made the first in situ detection of oxygen molecules outgassing from a comet, a surprising observation that suggests they were incorporated into the comet during its formation.

“We weren’t really expecting to detect O2 at the comet – and in such high abundance – because it is so chemically reactive, so it was quite a surprise,” says Kathrin Altwegg of the University of Bern, and principal investigator of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument, ROSINA.

Photolysis and radiolysis of water ice rejected

Her team explored various possibilities to explain the presence and consistently high abundance of Oand its relationship to water, as well as the lack of ozone. They first considering whether processes called photolysis and radiolysis of water ice could have converted ice into oxygen. They seemed the most likely sources, but finally they rejected these mechanisms.

“The instantaneous generation of O2 also seems unlikely, as that should lead to variable O2 ratios under different illumination conditions. Instead, it seems more likely that primordial O2 was somehow incorporated into the comet’s ices during its formation, and is being released with the water vapour today.”

Oxygen dissolved in water ice rejected

In one scenario, gaseous O2 would first be incorporated into water ice in the early protosolar nebula stage of our Solar System. Chemical models of protoplanetary discs predict that high abundances of gaseous O2 could be available in the comet forming zone, but rapid cooling from temperatures above –173ºC to less than –243ºC would be required to form water ice with O2 trapped on dust grains. The grains would then have to be incorporated into the comet without being chemically altered.

Possible warm molecular cloud

“Other possibilities include the Solar System being formed in an unusually warm part of a dense molecular cloud, at temperatures of 10–20ºC above the –263ºC or so typically expected for such clouds,” says Ewine van Dishoeck of Leiden Observatory in the Netherlands, co-author of the paper cited below.

“This is still consistent with estimates for the comet formation conditions in the outer solar nebula, and also with previous findings at Rosetta’s comet regarding the low abundance of N2.”

Radiolysis on dust grains also possible

Alternatively, radiolysis of icy dust grains could have taken place prior to the comet’s accretion into a larger body. In this case, the O2 would remain trapped in the voids of the water ice on the grains while the hydrogen diffused out, preventing the reformation of O2 to water, and resulting in an increased and stable level of O2 in the solid ice. Incorporation of such icy grains into the nucleus could explain the observed strong correlation with H2O observed at the comet today.

“Regardless of how it was made, the O2 was also somehow protected during the accretion stage of the comet: this must have happened gently to avoid the O2 being destroyed by further chemical reactions,” adds Kathrin.

“This is an intriguing result for studies both within and beyond the comet community, with possible implications for our models of Solar System evolution,” says Matt Taylor, ESA’s Rosetta project scientist.

References

Abundant molecular oxygen in the coma of 67P/Churyumov–Gerasimenko,” by A. Bieler et al is published in the 29 October 2015 issue of the journal Nature.

http://www.esa.int/Our_Activities/Space_Science/Rosetta/First_detection_of_molecular_oxygen_at_a_comet


Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.